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* The front page figure is a FitzHugh-Nagumo Problem with AMR (3D) simulation[1]. 
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Introduction 
In this review we will draw the path from the detailed model for giant squid 
axon, achieved by Nobel Prize-winners Hodgkin & Huxley[2, 3] to the complex 
phenomena of "Dissipation of excitation wavefront" [4]. The needed 
assumptions and their results will be reviewed.  
 

Hodgkin & Huxley axon model 
In 1952 Alan Lloyd Hodgkin and Andrew Huxley described a model to explain 
the ionic mechanisms underlying the initiation and propagation of action 
potentials in the squid giant axon. This squid axon was selected because of 
its size, up to 1 mm in diameter; typically around 0.5 mm, which enables 
experimental measurements using the equipment available at that time. The 
Hodgkin-Huxley model (HH) consists of a set of nonlinear ordinary differential 
equations. HH was the first model to use mathematical reconstruction of 
experimentally determined kinetics of ion channel transport and gating, rather 
than abstract equations. 
 

 
Equation 1 
 
Where E is the transmembrane voltage, gNa.K,l are maximal conductivities per 
membrane capacitance of Na, K, and leakage currents, ENa,K,l are their 
reversal potentials, m, h and n are fractions of open channel gates, m; h; n 
are their equilibria, and τm,h,n are their time scales[4]. 
 

 
Figure 1 - axon ion channel  and  pumps action[5] 
 
The HH realistic model is based on the physiological properties of the 
membrane but it has no analytical solution. This disadvantage led to a group 
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of simplified versions of the HH model, which analytical solutions can be 
applied to. 
 

FitzHugh–Nagumo model[6] 
In the mid-1950’s, FitzHugh sought to reduce the Hodgkin-Huxley model to a 
two variable model for which phase plane analysis applies. His general 
observation was that the gating variables n and h have slow kinetics relative 
to m: Moreover, for the parameter values specified by Hodgkin and Huxley, n 
+ h is approximately 0.8. This led to a two variable model, called the fast-slow 
phase plane model. 
 

( ) ( )( )( ) ( )

( ) ( ) nEn
dt

dn
En

IEEgEEnEgEEg
t

E
C

w

applLLNa
m
Nak

n
km

−=

+−−−−−−−−=
∂

∂

∞

∞ 8.0
34

Equation 2 
 
In effect this provides a phase space qualitative explanation of the formation 
and decay of the action potential[7]. A further observation according to 
FitzHugh was that the E -nullcline had the shape of a cubic function and the n-
nullcline could be approximated by a straight line, both within the physiological 
range of the variables. This suggested a polynomial model reduction of the 
form: 
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Equation 3 
 
Here, the model has been put in dimensionless form, E represents the fast 
variable (potential), v represents the slow variable (sodium gating variable), α, 
γ and ε are constants with 0 < α < 1 and ε << 1 (accounting for the slow 
kinetics of the sodium channel). In 1964, Nagumo constructed a circuit using 
tunnel diodes for the nonlinear element (channel), whose model equations are 
those of FitzHugh. Hence the equations have become known as the 
FitzHugh-Nagumo model (FNH). 
 
These rate equations of FNH don't have the needed spatial part in order to 
refine them we add:  
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Equation 4 
 
Where E corresponds to the transmembrane voltage and v represents all 
other, slow variables. This equation has analytical analysis, as well as 
simulation for one or more dimensions.  
 

 
Figure 2 - FNH in one dimension model Simulation[8]  
 

From the Hodgkin–Huxley axon to the heart model 
Up to this point all of the presented models describe only the axon, while the 
main interest of this paper is the functioning of the heart model. In order to 
approach this subject, two parts are needed: The first is a biological 
mechanism, analog to the one in the axon; the second is a mathematical 
description of the phenomena in more than one dimension. 
Experimentally based models of the heart have been developed since 1960, 
most of them assumed the HH like mechanisms [9].  
The basic feature of the properties of excitable membranes in HH formulation 
is that the current is carried by ions moving down their respective 
electrochemical potential gradients. For example, the sodium current changes 
direction when the sodium electrochemical potential gradient is reversed, by 
changing either the membrane potential or the extracellular sodium 
concentration. 
In cardiac muscle these HH like mechanisms were first discovered in 1963, 
when the Current-voltage relations of Purkinje fibres in sodium-deficient 
solution was described [10], and explored until 1979, when sodium current in 
cardiac Purkinje fibres was revealed [11]. After this more mechanisms were 
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discovered, the HH equations were adapted and a lot of simulations were 
conducted [12]. 
The transition from more than one dimension HH to the same in FNH is trivial 
(replace the x deviation by Laplace operator) 
 

 
Figure 3 - FNH two dimensional simulations[13] 

 

Dissipation of the Excitation Wave Fronts 

Subject problem 
Ventricular fibrillation (VF) remains the most common cause of sudden death 
in humans [14]. One of the factors causing this might be dissipation of the 
Excitation Wave Fronts. This phenomena cannot be adequately reproduced in 
the commonly used model, FHN-type system[4]. This can be shown using 
simulation in Figure 4: in FHN model, if the block lasts shorter than the action 
potential the wave does not dissipates.  
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Figure 4 – Temporeary block of excitation front dos e note produce dissipation in FHN 
model[4] 
 
It might be considered as an option, to use the existing CRN, a detailed model 
of human atrial tissue [14], but there is a huge advantage to simplified models 
applying equations that can be analyzed analytically like in this case.  
 

Methods 
Based on HH (Equation 1), using assumptions on the front of the wave where 
E is rapidly raised, to describe the front only, we consider the limit of large gNa, 
and disregard all ionic currents but Na. Another assumption regards the 
Values of τm(E) at the front, that are very small compared to other 
characteristic time scales of the problem. Thus m is always close to its 
quasistationary value <m(E)>. The differential equation for m is therefore 
eliminated.  
Thus we get a system of two equations: 

 
Equation 5 
 
These equations describe the propagation of the excitation front (the fast 
process) only, leaving all other processes, such as action potential and 
recovery (the slow processes), out of the scope. 
The last approximation regarding the m and h functions can be seen in Figure 
5. 

 
Figure 5 - Dependence of m and h in the detailed mo del and for this simplifid model 
 
After rescaling and nondimensionalizations we obtain the system:  
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Equation 6 
 
This simplified model produces the "needed" Dissipation of the Excitation 
Wave Fronts (Figure 6) and can be used to analyze other parameters like 
speed or front shape. For an accurate quantitative description, a less 
simplified model (Equation 5) can be used. 

 
Figure 6- Temporary local block of the excitation f ront in the simplified model. 
 

Personal attitude 
First, it seems that a main part of the article (larger than I'd expect) is trying to 
aim at the obvious fact: that FHN model is insufficient for dealing with 
dissipation of wave fronts. This, instead of specifying the detailed advantages 
of this model relatively to other CRN-like models.  
The second very strange thing, is the fact that this model aims at a very 
specific phenomena, that is not proven (at least not at the only referenced 
article provided for this reason[14]) to be the only or main reason for 
Ventricular fibrillation. This is much more peculiar if you consider the fact that 
the resulting model is not robust – it aims only at phenomena linked directly to 
the wave front.  
Despite these two rather tactical comments, this article is a nice practical 
mathematical tools used on a medical problem, trying to reveal its secret 
mechanisms.   
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